Potential Function Explain of the Quick Algorithm of Synergetic Neural Network
نویسنده
چکیده
We can determine the winner pattern of the synergetic neural network directly from order parameters and attention parameters when the attention parameters are equal or constant. In this paper, we explain that the basis of that quick algorithm is that the potential function of network and attractive domain of each attractor are fully determined for given attention parameters, and there is an analytic approximation for the division of attractive domains.
منابع مشابه
OPTIMUM DESIGN OF DOUBLE CURVATURE ARCH DAMS USING A QUICK HYBRID CHARGED SYSTEM SEARCH ALGORITHM
This paper presents an efficient optimization procedure to find the optimal shapes of double curvature arch dams considering fluid–structure interaction subject to earthquake loading. The optimization is carried out using a combination of the magnetic charged system search, big bang-big crunch algorithm and artificial neural network methods. Performing the finite element analysis dur...
متن کاملWavelet Neural Network with Random Wavelet Function Parameters
The training algorithm of Wavelet Neural Networks (WNN) is a bottleneck which impacts on the accuracy of the final WNN model. Several methods have been proposed for training the WNNs. From the perspective of our research, most of these algorithms are iterative and need to adjust all the parameters of WNN. This paper proposes a one-step learning method which changes the weights between hidden la...
متن کاملStructural Reliability: An Assessment Using a New and Efficient Two-Phase Method Based on Artificial Neural Network and a Harmony Search Algorithm
In this research, a two-phase algorithm based on the artificial neural network (ANN) and a harmony search (HS) algorithm has been developed with the aim of assessing the reliability of structures with implicit limit state functions. The proposed method involves the generation of datasets to be used specifically for training by Finite Element analysis, to establish an ANN model using a proven AN...
متن کاملVerification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation
Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...
متن کاملOptimization of Plastic Injection Molding Process by Combination of Artificial Neural Network and Genetic Algorithm
Injection molding is one of the most important and common plastic formation methods. Combination of modeling tools and optimization algorithms can be used in order to determine optimum process conditions for the injection molding of a special part. Because of the complication of the injection molding process and multiplicity of parameters and their interactive effects on one another, analytical...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002